

Presenting Data Visually

1. Start with the message/content you are trying to convey and identify the data that will be used
2. Consider your audience

- General Public
- Stakeholders
- Scientific Community

3. Consider the form of the data

- Prevalence estimates ("row percents")
- Distributions ("column percents")
- Measures of effect (conveying significance)

Presentation of Data

Tables, charts and graphs provide an effective method for communicating person, place, and time data to your audience

The organization and format of these tables, charts and graphs may differ depending on your goal and the type of results displayed (ie descriptive statistics, measures of effect, results of multivariable methods, etc)

Presenting Data Visually

4. Determine if a table, chart (what type?), or both are needed to communicate the message
5. Determine where to display each variable
6. Determine the best design for the remaining objects
7. Determine if particular data should be featured, and if so, how

Modified from Stephen Few's Whitepaper "Communicating Numbers"
http://www.perceptualedge.com/articles/Whitepapers/Communicating_Numbers.pdf

Presenting Data Visually

Tables: Convey large amount of data in systematic way

Effective tables include:

- Table number and title that clearly identifies the data displayed
- Column and row headings
- Decimal alignment
- Expanded forms of abbreviations used in the tables, generally as footnotes
- Additional explanatory footnotes as needed
"Guidelines for Conducting Birth Defects Surveillance: Chapter 11 -Data Presentation": http://www.nbdpn.org/docs/Ch11_DataPresentation.pdf

Effective Tables						
Table 2-6 America's sweet tooth increased 39 percent between 1950-59 and 2000 as use of com sweeteners octupled						
Annual averages						
Hem	1950-59	1960-69	1970-79	1980-89	1990-99	2000
Pounds per capita, dry weight						
Total caloric sweteners	109.6	114.4	123.7	126.5	145.9	1524
Cane and beet suyar	967	98.0	96.0	68.4	64.7	65.6
Cons sweteners	11.0	14.9	26.3	56.8	79.9	85.3
Hoh tuutose can srup	0	.	5.5	37.3	56.8	63.8
Guvose	7.4	10.9	16.6	16.0	19.3	18.1
Detrose	35	4.1	4.3	3.5	3.8	3.4
Other catolc sweteners	20	1.5	1.4	1.3	1.3	1.5
Note: Totals may nct add due lo rounding. IEffle smps (sugarcane, soge, maple, and refiser'i). eftile nolasses and honey Source: USDA, Econoric Research Service						
Also see handout on cancer survival rate tables						
					5	

Presenting Data Visually

Charts: Summarize data and highlight main points for audience

Line Charts:

- Trend
- Continuous variables
- Survival Data

Bar Charts (vertical and horizontal):

- Trend
- Prevalence data for discrete groups
- Distributions/Proportions (100\% stacked bars)

Pie Charts:

- Distributions/Proportions
- Population Attributable Fractions (PAFs) ${ }^{6}$

Line Chart Guidelines

- Lines should only be used when variable is on an ordinal or continuous scale
- Do not connect the points on a line if there are missing values in between existing data
- Intervals should be equally sized
- Exception: Extreme outliers can be lumped at the lower or upper end (ie income)
- Tick marks on the x-axis should accurately reflect the distance between the values
http://www.perceptualedge.com/articles/visual_business_intel
liaence/line araphs and irreaular intervals.ōdf

Line Chart - Distribution + Trend

NCHS Data Brief • No. 21 - August 2009
From 1970 to 2006 the proportion of first births to women aged 35 years and over increased nearly eight times (1,2). In 2006, about 1 out of 12 first births were to women aged 35 years and
over compared with 1 out of 100 in 1970 . According to preliminary data, the proportion for 2007 was the same as in 2006 (3). In 2006, only 21% of first births were to mothers under age 20 , down from 36% in 1970 (Figure 2).

Stacked Bar Charts

- If possible, avoid using stacked bars, especially when the percentages don't add to 100% - they make it difficult to compare across groups
- Sometimes 100\% stacked bars make sense for comparing distributions, but:
- Only use with a small number of categories
- Display the data label in each portion of the bar

Ineffective Stacked Bar Chart

Effective 100\% Stacked Bar Chart

Pie Charts

In general, it is difficult to make comparisons effectively with pie charts, but they are sometimes useful for displaying the parts of a whole / distributions

If using pies, keep the ordering and positioning of pie slices the same across pies when comparing multiple pies

Order slices by magnitude when possible

Pie Chart Plus Vertical Bar - Distribution

Smoking and Quitting Behaviors During Pregnancy, State A 2005

Source: State A PRAMS Data 2005
21

Presenting Data Visually

Maps: Show geographic comparisons and associations
Descriptive

- Plotting locations of events as points on a map (dot-density maps)
- Displaying rates/prevalences for polygons (census tract, zip code, county, state, country) on a map (choropleth/thematic maps)
Analytic
- Spatial relationships between exposures and health outcomes

Analytic Design Principles

1. Comparisons
2. Causality, Mechanism, Structure, Explanation
3. Multivariate Analysis
4. Integration of evidence
5. Documentation
6. Content Counts Most of All

http://www.commonwealthfund.org/usr_doc/leatherman_pedchartbook_700.pdf

25

Principle 1: Comparisons
Show appropriate comparisons, contrasts, differences

- Understand whether row percents or column percents more effectively make comparison
- Order bars/pie pieces in charts to show comparison of interest
- Display benchmarks or overall averages to provide a frame of reference when appropriat
- Highlight value of interest to be compared to others, using a darker color or outline

Column vs Row Percents in Tables				
Table 1. Distribution (\%) of Selected Matemal Characteristics Among Low Birth Weight and Non-Low Birth Weight Infants, Cook County, Illinois, 1989-1991			Table 1. LBW Rates by Selected Maternal Characteristics, Cook County, Illinois, 1989-1991	
Characteristic	$\begin{aligned} & \text { LBW Infants } \\ & (n=5,365) \end{aligned}$	Non-LBW Infant $(n=35,283)$	Characteristic	LBW Infants \% LBW
Matemal age, years**			Matemal age, years**	(n=40,648)
<20	23.1	26.1	<20	
20-35	76.9	73.9	20-35	11.9
Matemal education, years*			Matemal education, years*	13.7
Missing data	1.0	0.8	Missing data	
<12	39.5	32.5	<12	16.0
12	37.0	37.6	12	15.6
>12	22.5	29.0	>12	13.0
Adequacy of prenatal-care utilization (13)*			Adequacy of prenatal-care utilization (13)*	10.5
Missing data	72	3.3	Missing data	
None or hadequate	31.6	29.5	None or hadequate	24.9
Intermediate	15.3	23.6	Intermediate	14.0
Adequate	17.7	25.4	Adequate	9.0
More than adequate	28.1	18.2	More than adequate	9.6
Abbreviation: LBW, Iow birth weight. * P <0.05.			Abbreviation: LBW, Iow birth w-rg... - $P<0.05$.	
From Collins, et al. (2009). Transgenerational Effect of Neighborhood Poverty on Low Birth Weight Among African Americans in Cook County, Illinois, AJE				

Comparison to a Benchmark

The 2010 CDC Breastfeeding Report Card: Data from the National Immunization Survey	illinols 2007 (\%)	HP2020 Objective (\%)
Breastfeeding Initiation	70.2	≥ 81.9
Breastfeeding to 6 Months	36.0	≥ 60.5
Breastfeeding to 12 Months	16.4	≥ 34.1
Exclusive Breastfeeding to 3 Months	27.9	≥ 44.3
Exclusive Breastfeeding to 6 Months	11.2	≥ 23.7
Percent of Live Births Occurring at Baby Friendly Facilities	1.3	≥ 8.1
Percent of breastfed Infants Receiving Formula Before 2 Days of Age	28.1	≤ 15.6

Principle 2: Causality, Mechanism, Structure, Explanation

Show causality, mechanism, explanation, systematic structure

- Highlight policies, interventions, risk factors, or changes in human behavior that may have caused a trend or association
Principle 2: Causality, Mechanism,
Structure, Explanation
Show causality, mechanism, explanation,
systematic structure
- Highlight policies, interventions, risk factors, or
changes in human behavior that may have
caused a trend or association

Principle 3: Multivariate Analysis

Show more than 1 or 2 variables

- Use stratification to show differences across groups
- Use regression modeling when appropriate to capture multivariable nature of problem
- Use and communicate adjustment procedures

Presenting Results of Multivariable Models in Charts

o Present a series of adjusted ratio measures (OR, $R R, H R$, etc) on one chart for comparison
o The scale is different for ratio measures that are less than one (protective factors) versus those that are greater than one
o Include error bars to represent both the precision of the estimate (width of the confidence intervals) and the significance level of the estimate

Presenting Predicted Values from Multivariable Models in Charts

- Estimate predicted probabilities from binomial regression models for groups of women with different risk status
- Use beta estimates from model to determine highest/lowest risk value for each variable and write contrast/estimate statement to estimate the predicted probability for each group.

Presenting Predicted Values from
Multivariable Models in Charts

High risk = Age 35+, less than HS education, 3+ previous livebirths, smoker Low risk = Age 20-34, more then HS education, 1-2 previous livebirths, non-smoker Estimated prevalences from a multivariable binomial regression model

Principle 4: Integration of Evidence

Completely integrate words, numbers, images, diagrams

- Use clear titles, direct labels and footnotes
- Avoid legends as much as possible or put them inside the chart to maximize the chart area and keep the labels closer to the data
- Blend graphical representations of data with short narrative to help with interpretation
Detail adds precision, clarity and credibility

Integration of Evidence

Narrating Charts

- Narrative inserted directly in charts or in accompanying text helps guide your audience (ie the general public in your jurisdiction, advocates, policy makers) to interpret the charts and can be used to highlight particularly important or meaningful results
- Clear titles and labels are still needed in case the reader skips over this additional text

Narrating Tables

- Present a series of adjusted ratio measures (OR, RR, HR, etc) in one table for comparison
- Convey reference groups and significance in a way that is clear to a general audience
- Narrate tables when appropriate to help audience interpret results

Narr	T	bles	
Table 1. Adjusted* Prevalence Ratio (aPR) of factors associated with late or no entry into prenatal care, MA PRAMS, 2007			Tables with Modeling Results: Some Issues
Age and education	aPR	$95 \% \mathrm{Cl}$	Titling, labeling
<20 yrs	3.3	1.8, 6.0*******)	Titing, labeling
20+ yrs, Shigh school	$\stackrel{1.5}{\text { Ref }}$	1.0, $2.3^{+{ }^{* *}}$	-Reference group display,
	Ref		position, wording
Black non-Hispanic	1.8	1.2, 2.6**	Confidence interval
Hispanic Other	1.4 1.9		display, format
Not married vs. married	1.1	0.7, 1.7	
Parity			Describing statistical
No previous live birth 1-2 previous live births	$\begin{aligned} & \text { Ref } \\ & 1.2 \end{aligned}$	$\stackrel{-9}{0.9 .7}$	results
$3+$ previous live births	2.6	1.6, 4.3**	
Pre-pregnancy insurance			Explanatory text in table
Private	Ref 1.7	${ }_{1.1,1.2 .8 * *}$	
Uninsured	1.8	1.1,, $8^{\text {+* }}$	
			56

Narrating Tables			Tables with Modeling Results: Some Issues Titling, labeling
Table 1. Comparing the percents of Massachusetts women who get into prenatal care late or not at all across various factors, PRAMS, 2007			
	Ratio of Percents	95\%CI	
Age and education Percents	3.3	1.8,6.0.0*	
$20+$ yrs, Shigh school	1.5	1.0, 2.3**	
20+ 2 yrs, > high school	Ref	--	
White non-Hispanic	Ref	--	
Black non-Hispanic	1.8	1.2, 2.6**	
Hispanic	1.4	0.9,2.1	
Not married vs. married	1.1	${ }^{1.3,2,17}$	
Parity			
No previous live birth	Ref		
${ }_{\text {l }}^{\text {1-2 previous live births }}$	1.2 2.6	$\stackrel{0.9,1.7}{1.6,4.3 * *}$	
Pre-pregnancy insurance			
Private	Ref	-	
Uninsured		(1.1, $1.88^{* * *}$	
** Sigaificanly differen from the reference group ($a=0.05$).			

Narrating Tables				
Table 1. Comparing the percents of Massachusetts women who get into prenatal care late or not at all across various factors, PRAMS, 2007			Tables with Modeling Results: Some Issues	
	Ratio of Percents	95\% CI		
$20+$ yrs, Shigh school	1.5	$1.0-2.3$ **		
20 + yrs $>$ high school Maternal race	Ref	--		
Maternalree Black non-Hispanic	1.8	1.2-2.6***	- Reference groups all	
${ }^{\text {Hispanic }}$	1.4	$\stackrel{0.9-2.1}{13-27 * * *}$	the last category	
Other White non-Hispanic	1.9	${ }^{1.3-2.27^{* *}}$	the last category	
Not married vs. married			- Confidence intervals	
Not Married	1.1	0.7-1.7	alligned and with	
Parity			hyphens	
$3+$ previous live births	2.6	1.6-4.3**		
1-2 previous live births	1.2	0.9-1.7		
No previous live birth	Ref	--		
Pre-pregnancy insurance Medicaid	1.7			
Uninsured	1.8	$1.1-1-0.8 * *$		

Measurement Scales

Always start y-axis at zero for bar charts; use points instead of bars if y-axis must start at a number other than zero to zoom in on relevant data

Proportions can be distorted when scales change across or within charts; for example:

- Two different graphs examining the same outcome, but based on different time periods or different lengths of time
- A bar graph of several time-based groups, where the groups correspond to different lengths of time
- Graphs of statistical functions, such as regression lines, that extend beyond the range of values observed in the data
"Guidelines for Conducting Birth Defects Surveillance Chapter 11 - Data Presentation" http://www.nbdpn.org/docs/Ch11_DataPresentation.pdf

Principle 5: Documentation

Thoroughly describe the evidence;

 important for establishing credibility- Provide a detailed title
- Indicate authors and sponsors
- Document data sources and years
- Show complete measurement scales
- Acknowledge error (confidence intervals) in estimates when appropriate
- Communicate statistical significance when appropriate

Communicating Statistical Significance

Figure A11.4-7 Area Map

Principle 6: Content Counts Most of All

Analytical presentations ultimately stand or fall depending on the quality, relevance and integrity of content

- Charts/tables should be content focused, not process focused
- Simple design, rich content
- Eliminate anything that doesn't contribute to content, including boxes, legends, "chart junk"

Small Multiples

Minimize the time it takes audience
 to figure out format

- By keeping the quantitative scale consistent, graphic is easier for audience to read
- Audience doesn't need to figure out format again with each new display of information
- Especially useful when there is a fourth dimension that would make a single chart too busy or difficult to interpret

Minimize "Ink-to-Data Ratio"
 Reduce optical clutter

- Remove boxes around text, legends and figures
- Eliminate gridlines in favor of data labels, or
- De-emphasize gridlines with white breaks in bars
- Minimize axis labels

Example: Label every other year on x-axis

- Remove tick marks for categorical data

In cases where all of the above is generated by the graphing software by default, do not hesitate to edit it out wherever possible

Use of Color

- Color should be used only if it conveys additional information
- In general, use soft colors in graphs and reserve bolder, brighter colors for points that you want to stand out
- If color is used to distinguish two different categories, make sure they are different enough in intensity to be distinguished in black and white and for the color blind
- Gradations of one color should only be used with ordered variables, not nominal variables
http://www.perceptualedge.com /articles/Whitepapers/Communi cating_Numbers.pdf
http://www.perceptualedge.com/articles /visual business intelligence/rules for /visual_business_intelligence/rules_for
$7 \overline{5}$
_using_color.pdf

Minimize Chartjunk

"Chartjunk" = Visual elements in charts that are not necessary to comprehend the information and distract viewer from information

- Background colors or graphics
- Pictures
- Clip art or animations
- 3-D effects - distort images

Tufte, Edward R. (1983). The Visual Display of Quantitative Information. Cheshire, CT: Graphics Press.

3-D Distortion

Figure 1.8
Global distribution of cause-specific mortality among children under five Undernutrition is implicated in up to 50 per cent of all deaths of children under five.

$3-\mathrm{D}$	
Causes of Maternal Death \& Effective Interventions	
	- Hemorrhage (oxytocin)
8\%	- Sepsis (aseptic delivery/antibiotics)
	- Eclampsia (magnesium sulfate)
	- Obstructed labor (partograph/skilled attendant/cesarean section)
	- Unsafe abortion (access to family planning/safe abortion)
	- Other directcauses
Source: The World Health ReportWHO 2005	$\begin{aligned} & \text { "= Indirect causes (incl. HIV, malaria, } \\ & \text { anemia) } \end{aligned}$
http://confutata.com/2010/03/12/safe-birth-is-a-human-rights-issue/	
	83

Consider Your Audience Means Respect Your Audience

- Don't underestimate audience and "dumb-down" content Educate as you inform
- Example: if you never show standard errors because your audience doesn't understand them, your audience will never understand them
- Use "plain language"
- A plain language document-one in which people can

Find what they need

- Understand what they find

Act appropriately on that understanding

PLAIN LANGUAGE: A PROMISING STRATEGY FOR CLEARLY COMMUNICATING HEALTH INFORMATION AND IMPROVING HEALTH LITERACY
http://www.health.gov/communication/literacy/plainlanguage/PlainLanguage.htm

Consider Your Audience Means Respect Your Audience Plain language:

- Organize information so the most important behavioral or action points come first
- Break complex information into understandable chunks
- Use simple language or define technical terms
- Provide ample white space so pages look easy to read
- Use short sentences and active voice
- "Plain language is not "dumbing down"...
- "Plain language is not just about vocabulary or grade level. Writing to a certain grade level does not necessarily ensure that the message is in plain language or understood by the intended audience..."
PLAIN LANGUAGE: A PROMISING STRATEGY FOR CLEARLY COMMUNICATING HEALTH INFORMATION AND IMPROVING HEALTH LITERACY
http://www.health.gov/communication/literacy/plainlanguage/PlainLanguage.hty

Educate as You Inform: Explaining Adjustment

- To more accurately portray relationships between risk factors and health outcomes, we use a statistical approach called "adjustment" to account for characteristics that might distort what we see
- Example: We adjust for a woman's age and educational level to better understand the relationship between cigarette smoking and infant mortality
- The information about relationships between risk factors and MCH is reported using adjustment. This approach accounts for differences among women that might distort what we see.
- Example: The relationship between cigarette smoking and infant mortality might be distorted unless we adjust for the differences in women's age and educational level
- The statistics reported are adjusted so that they account for differences between women. With this approach, the comparisons we report, for example between those with and without health insurance, are accurate regardless of other factors

Balancing Clarity and Detail

Consider a layered approach to presenting results in order to allow audience to drill down from summary points to details:

1. Executive Summary
2. Detailed graphs and charts with annotation and accompanying narrative/pictures
3. Appendix with all underlying tables and statistical results, as well as methods and data source description
Prior to finalizing reports, always pilot materials with a few people who are unfamiliar with the data to make sure your message is getting across as anticipated; Revise as necessary

Take-Home Message

Analytic methods need not be simplistic in order to deliver a clear, simple message and scientific rigor should be practiced regardless of the audience

